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1. Introduction 

Heat capacities and entropies of molecular substances in 
the ideal gaseous state can be estimated to moderate accu­
racy on the basis of atomic additivity rules. Benson and 
Buss,1 in their detailed study of thermodynamic additivity 
principles, assigned a set of empirical values, reproduced in 
Table I, for atomic contributions to molar heat capacity 
Cp0 and entropy S° at 2980K. Within the group of 75 com­
pounds they considered, the atomic additivity assumption 
for Cp0 and 5 ° was generally good to within ±2 cal /(°K 
mol). (For symmetrical molecules, R In a is subtracted 
from the sum of atomic entropies.) 

In Table I, / stands for the ligancy of an atom: the num­
ber of other atoms directly bonded to it. For example, C has 
a ligancy of 4 in CH4 , 3 in C2H4 , 2 in C2H2 , and 1 in CO. It 
is striking that atomic entropies are predominantly depen­
dent on ligancy whereas heat capacities appear relatively 
insensitive. 

In the scheme developed by Benson and Buss, additivity 
of atomic properties plays the role of a zeroth-order approx­
imation. The corresponding first- and second-order approxi­
mations involve additivity of bond contributions and of 
group contributions, respectively.2 Our concern in this 
paper will, however, be limited to atomic additivity. 

It is perhaps remarkable that such additivity principles 
work at all. The theoretical calculation of thermodynamic 
properties from molecular parameters and spectroscopic 
data by the methods of statistical mechanics is, of course, 
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well established.3 To a high level of approximation, the rele­
vant parameters are just molecular weight, moments of in­
ertia, fundamental vibrational frequencies, and symmetry 
number (plus, in special situations, electronic contributions, 
internal rotational barriers, etc.). The molecular weight en­
ters, of course, via its logarithm and none of the other pa­
rameters is, at first glance, anything with an additive atom­
ic structure. It will be our purpose to account semiquantita-
tively for the nature of atomic contributions to heat capaci­
ty and entropy and to show why additivity approximations 
work even as well as they do. 

2. Heat Capacity 

For an «-atomic molecule in the ideal-gas limit 

. 3n-6 

4# + X C (^) (non-linear) 

3n-5 ' ' 

V2R + E c ( ^ ) (linear) 

where the vt are fundamental vibrational frequencies. Elec­
tronic contributions are assumed to be negligible at the 
temperature considered. In the harmonic approximation, 
C{vi) is the Einstein heat-capacity function. 

(e i - I)2 
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Table I. Benson and Buss Values for Atomic Contributions 
to Cp ° and S0 at 2980K (cal/°K mol) 

Table II. Effective Atomic Frequencies at 2980K 

—/— 
Atom c„«> i 

H 
D 
C 
N 
O 
F 
Cl 
Br 
I 
Si 
P 
S 

0.85 
1.20 
3.75 

40 
40 
40 
70 
20 
60 
90 

4.70 

21.0 
21.7 
22.0 
22.9 
25.5 
25.5 
28.4 
31.3 
33.3 

27.0 

5.3 
5.8 

10.5 

12.8 

-13.5 
-12.1 

-32.6 

- 9 . 5 
-11.0 

-29.3 

-33.5 

Since 0 < C(v) < R, one can represent the translational, ro­
tational, and PV contributions to Cp as five or six fictitious 
vibrational modes of appropriate frequency, such as to put 
eq 1 in the more symmetrical form 

Sn 

C° = Zc(V1) (3) 
i=i 

Now the heat capacity is also approximately represented as 
a sum of atomic contributions, i.e., 

t = l 
atoms 

(4) 

This suggests that each atomic term corresponds approxi­
mately to a set of three modes. Assuming, for simplicity, 
that the three normal frequencies associated with a given 
atom are equal, we can write 

3Rx ^e ! 

( / ' " I)2 

(5) 

Indeed the values of Cp
( , ) in Table I lie in the appropriate 

range 0 to 3R. We have, in effect, treated a molecule as a 
miniature Einstein crystal. The additivity implied by eq 4 is, 
moreover, equivalent to Kopp's rule for crystalline com­
pounds. By using the empirical Cp

(/) values in eq 5, we ob­
tain the set of frequencies v, listed in Table II. 

These atomic frequencies, with the exception of the one 
for Si, seem physically reasonable in that each lies in the 
range between typical stretching and bending frequencies 
involving that atom.4 For example, the value 508 c m - 1 for 
Cl lies between the bend in CCl4, 319 cm - 1 , and the C-Cl 
stretch, 570 cm - 1 . For S, 354 c m - 1 lies between the R - S -
H bend in mercaptans, 332 cm - 1 , and the S-S stretch, in 
the range 430-490 cm - 1 . 

3. Translational Entropy 

The atomic entropies given in Table I depend primarily 
on ligancy, only secondarily on atomic mass. For a given el­
ement, 5 ( , ) decreases in regular steps averaging about 18 eu 
as the ligancy is increased. A qualitative explanation of this 
trend was given by Benson and Buss, as follows. The molar 
entropies of the gaseous compounds considered are all of 
roughly the same magnitude, around 65 eu/mol. Thus put­
ting additional atoms on to a given central atom will not 
change the total entropy very much. But since these termi­
nal atoms carry with them fixed atomic entropy values, that 
of the central atom must be decreased in compensation as 
its ligancy is increased. We shall put this argument on a 
more quantitative basis in this section. 

Atom Xi Vi, c m - 1 

H 
D 
C 
N 
O 
F 
Cl 
Br 
I 
Si 
S 

5.29 
4.73 
2.41 
2.67 
2.67 
3.45 
2.45 
2.09 
1.79 
.35 

1.71 

1096 
980 
499 
553 
553 
715 
508 
433 
371 
73 
354 

The molar translational entropy of an ideal gas is given 
by the Sakur-Tetrode equation. 

= R In 
(27rwfer)3/2FV 

WNn 

„5 /2 -

(6) 

Setting T = 2980K, this can be reduced to a simple numeri­
cal relationship involving only the molecular weight. 

S t r° = 25.9915 + 2.9807 In M eu /mol (7) 

Molecular weight is, of course, an additive parameter par 
excellence, but not so its logarithm. Nonetheless, an ap­
proximate additivity relation can be established if the mo­
lecular weights M are predominantly clustered about some 
mean value MQ. For then 

In M = In Mn + In (M/M^) 

and assuming MJMQ ~ 1 

In (M/Mn) w (M/Mn) - 1 

(8) 

(9) 

One can do a bit better than this truncated expansion by 
seeking the optimal least-squares linear fit In x « ax — /3 in 
the range, say, 1 < x < 2. Minimizing the integral JV(In x 
— ax + /3)2 dx with respect to a and /3 gives the values a = 
0.6821 and /3 = 0.6368. Thus 

In (M/MQ) « 0.6821 (^/M0) - 0.6368 (10) 

in the range Mo < M < 2MQ. NOW the average molecular 
weight of the 75 compounds considered by Benson and Buss 
is approximately 80. By equating this value to the geometric 
mean of MQ and 2MQ we get, to the nearest integer, MQ = 
56. Thus eq 7 can be approximated by the linear relation­
ship 

36.09 + 0.03631M eu/mol (11) 

This lies within ±0.2 eu of the exact value in the molecular 
weight range M = 53-121 and within ±1 eu in the range M 
= 31-172. 

The question now arises as to how one could formulate eq 
11 as a sum over atoms. Most of its magnitude is in the con­
stant term and this cannot be simply divided among the 
constituent atoms since each atom has no way of "knowing" 
how many other atoms the molecule has. One can, however, 
invoke an elementary summation principle involving atomic 
ligancies. In a simply-connected n-atomic molecule (no 
rings) the sum of the ligancies equals twice the total num­
ber of bonds (single and multiple bonds counted equally). 
The number of bonds is, in turn, n — 1, so that 

Z Z{ = 2w - 2 
<=i 

(12) 

(This corresponds, in graph theory, to a famous theorem of 
Euler.) We can alternatively write 
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Table III. Atomic Translational Entropies at 2980K Table IV. Atomic Vibrational Entropies at 298 CK 

-Str"" eu/mol-
_/ 

Atom 1 

H 
D 
C 
N 
O 
F 
Cl 
Br 
1 
Si 
P 
S 

18.08 
18.12 
18.48 
18.55 
18.63 
18.76 
19.33 
20.54 
21.23 

19.21 

0.44 
0.51 
0.58 

1.29 

1.16 

-17.61 
-17.54 

-35.66 

-16.92 
-16.88 

-35.08 

-34.93 

£(i - CAh)) 
> = 1 

(13) 

By inserting this representation of unity into the first term 
of eq 11, we arrive at the approximate atomic additivity for­
mula 

S ° Zs 
Ul 

U) 
t r 

(14) 

S t r
( i> = 36.09(1 - (V2I1)) + 0.03631M, 

in which /, and Af,- are respectively the ligancy and atomic 
weight of atom /. Note that the argument leading from eq 
11 to 14 is exact. The only approximation in this represen­
tation of atomic translational entropy comes from manipu­
lation of the logarithm. Calculated values of 5 t r

( / ) are given 
in Table III. For the heavy atoms Br and I, we have used 
the alternative values M0 = 124 and 190, respectively, to 
reflect the higher average molecular weights of molecules 
containing these atoms. 

Remarkably, we have accounted almost precisely for the 
average increment of 18 eu. We have shown, moreover, that 
/ = 1 and 2 is associated with positive S<-1\ I = 3 and 4 (or 
greater) with negative 5 , ( , ). Included in the above scheme, 
incidentally, is also the case / = 0, which represents the 
monatomic entropy to the same level of accuracy. 

4. Vibrational and Rotational Entropy 

The differences between the empirical entropy values in 
Table I and the corresponding calculated translational en­
tropies in Table III do not show any systematic variation 
with ligancy (except possibly for sulfur). We shall conclude 
therefore that the residual vibrational and rotational contri­
butions to entropy are, at least approximately, independent 
of ligancy. 

The vibrational entropy can be treated by adaptation of 
the Einstein model, in analogous fashion with the heat ca­
pacity. Accordingly we assume 

. ( • > 3R - In (1 - e 
- 1 ""] (15) 

The atomic frequencies determined in section 2 imply the 
atomic vibrational entropies listed in Table IV. We are, of 
course, overcounting by the five or six fictitious modes in­
troduced into eq 3. However, molecular vibrations contrib­
ute much less proportionately to entropy than to heat ca­
pacity, so that the associated error is not serious. Compari­
son for several molecules of accurately calculated vibration­
al entropies with those obtained using eq 15 shows agree­
ment well within ±1 eu/mol. 

Atom 

H 
D 
C 
N 
O 
F 

Svibll), eu/mol Atom SvW0, eu/mol 

0.19 
0.30 
1.98 
1.61 
1.61 
0.87 

Cl 
Br 
I 
Si 
S 

1.92 
2.55 
3.23 
4.08 
3.44 

The rotational contribution to entropy appears to be the 
most difficult to characterize from the standpoint of atomic 
additivity. This is because the contribution of an atom to a 
principal moment of inertia is most sensitive to its location 
relative to the molecular center of mass. There is, moreover, 
a different formula for rotational entropy in linear and non­
linear molecules (although about 90% of the compounds 
considered are nonlinear). 

Lacking as we do any a priori approach to atomic rota­
tional entropies, we shall merely tabulate their approximate 
empirical values based on subtraction of translational and 
vibrational contributions (Tables III and IV) from total 
atomic entropies (Table I). We again assume negligible 
electronic contributions. The results are shown in Table V. 
Interestingly, there is a fairly good correlation between the 
atomic rotational entropy of atom X and half the rotational 
entropy of the X2 molecule, calculated with a = 1 (rather 
than 2). These latter quantities are also shown in Table V. 
The correlation is, in fact, poor only for C, N, Si, and S. 

As an illustrative example, let us cite the molecule 
CF3CN. From spectropscopic parameters, Janz5 calculates 
the following values at 2980K: Str = 39.57, 5 r o , = 24.09, 
SVib = 7.57, S*°298 = 71.22, Cp° _= 18.61. The_ additivity 
rules of Benson and Buss predict S°298 = 69.9, Cp° = 18.1 
while the methods developed above give otr — 

39.61,SvIb = 
8.18. 
5. Further Elaborations 

The molar heat capacity given by eq 1 contains a con­
stant term AR or 1IJR which amounts, on the average, to 
something like 50%. One could certainly exploit this fact in 
utilizing ligancy-dependent atomic heat capacities appro­
priately weighted by factors (1 — 1 M ) . Introduction of 
more parameters should, in any event, result in a better fit 
of experimental data. The necessity of introducing ligancy 
is somewhat more compelling in the case of translational 
entropy since the constant term in eq 11 usually contributes 
over 90%. Still, this same constant is more like 60% of the 
total entropy, a fraction not dramatically greater than that 
for the heat capacity. 

Since much more extensive and accurate heat-capacity 
data are now available, it might be worthwhile to work out 
a more elaborate atomic-additivity scheme, introducing li­
gancy to take account of the translational, rotational, and 
PV contributions. We might, in addition, put forward the 
following suggestion with regard to the vibrational contri­
butions. For a nonlinear, noncyclic molecule, one can 
roughly characterize the In — 6 vibrations as n — 1 stretch­
ing modes plus 2« — 5 "softer" deformation modes, such as 
bending, twisting, wagging, rocking, etc. By virtue of the li­
gancy summation formula, eq 12, we have the identities 

Z% 2 h - 1 

and (16) 

Z (%1, - 3) = 2w - 5 
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Table V. Atomic Rotational Entropies at 2980K wherein 

A t o m St,Jt
(' 1US1Ot (X2)* 

H 
D 
C 
N 
O 
F 
Cl 
Br 
I 
Si 
P 
S 

2.7 
3.3 
1 . 5 , 2 . 9 , 2 . 1 , 
2.7. 3.7, 3.8 
5 .3 ,6 .6 
5.9 
7 .1 ,7 .3 
8.2 
8.8 
1.7 

4.4, 8.2, 2.2, 

1.1 

- 2 . 0 

2.21 
2.90 
5.81 
5.60 
5.93 
6.44 
7.70 
8.79 
9.56 
7.78 
7.48 
7.50 

y = ekT/hc 

C 1 l inear 

T? = ) 
I % nonlinear 

B' = 

(ABC/it) 1/3 

l inear 

nonlinear 

° Calculated by difference. h Calculated from rotational constants 
tabulated in Herzberg, "Spectra of Diatomic Molecules," Van 
Nostrand, Princeton, NJ., 1950, but using <r = 1. Si value calcu­
lated using Si-Si distance of 2.32 A in silane. 

This suggests the following representation for atomic heat 
capacity 

C,"> « 4R(I - (V2Ii)) + 1AhC(V1') + 

(V2I1 - 3)C(V1") (17) 

in which v{ and v{' are empirically determined "hard" and 
"soft" atomic frequencies. Analogously, for linear mole­
cules 

For a mixed group of molecules, r/ in eq 20 could be inter­
preted as a suitable average. 

Moments of inertia have the structure / = £,w,p,-2 m 

which pi represents a plane projection of the distance of 
atom ; from the center of mass. In some average sense one 
might write / « £,-/,• with /, = w,(p/2)av Since rotational 
constants are inversely proportional to moments of inertia, 
it is suggested that 

UB' « HlZB1 (21) 

If now Bo represents the mean value of B' for some group of 
molecules, we can approximate the logarithm as done in 
section 3-. Since rotational constants can vary over several 
orders of magnitude, however, it is probably just as well to 
use simply In x » x — 1. The result is 

Ct V2Rd - V2I1) + V2I1C(V1') + 
S n o t * T1R In 

eB„ 
+ TjRB0H^- ~ R In a (22) 

(2I1 - 2)C(vt") (18) corresponding to atomic contributions 

A suitable average of (17) and (18) might pertain to a 
mixed group of linear and nonlinear molecules. 

A very similar analysis would pertain to the vibrational 
entropy except that the constant term would be missing and 
the Einstein entropy function used in place of C(v). 

The additivity of vibrational contributions to thermody­
namic functions could also be based on the concept of atom­
ic force constants recently developed by King.6 Such an ap­
proach could certainly be worked into our scheme should a 
more accurate accounting for vibrations become necessary. 

Finally, we shall suggest an elaboration for the rotational 
entropy. Rigorously, in terms of spectroscopic rotational 
constants 

C (i) rjR In 
eBn 

1 L VRB0 

B1 
(23) 

R In (ekT\ 

•Snot ~ 

" ( S 

[ 1 It" 
L a (ABC)"* \hc J 

) 

3/2-1 
(nonlinear) 

(19) 

(linear) 

These two cases might be combined formally as follows 

Snot = T1R In (WB') - R In a (20) 

The sequence of rotational entropy contributions for sulfur 
in Table V might conceivably be exhibiting this behavior. 
By our estimates, 5 rot ( / ) * 4.4, 8.2, 2.2, and - 2 . 0 eu for / = 
1 to 4. Now, the / = 2, 3, and 4 values conform approxi­
mately to 10(1 - V2/) + 8 eu, but the / = 1 value of SrotW 
would then has to be about 13 eu. Clearly, better empirical 
data will be required before this line of development can be 
pursued further. 
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